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ABSTRACT: Adsorption free energies of 32 small biomolecules
(amino acids side chains, fragments of lipids, and sugar molecules)
on 33 different nanomaterials, computed by the molecular
dynamics - metadynamics methodology, have been analyzed
using statistical machine learning approaches. Multiple unsuper-
vised learning algorithms (principal component analysis, agglom-
erative clustering, and K-means) as well as supervised linear and
nonlinear regression algorithms (linear regression, AdaBoost
ensemble learning, artificial neural network) have been applied.
As a result, a small set of biomolecules has been identified,
knowledge of adsorption free energies of which to a specific
nanomaterial can be used to predict, within the developed machine
learning model, adsorption free energies of other biomolecules.
Furthermore, the methodology of grouping of nanomaterials according to their interactions with biomolecules has been presented.

■ INTRODUCTION
Understanding of interactions between nanomaterials and
biological matter is of primary importance for numerous
biotechnology and biomedical applications, as well as for
evaluation of nanomaterials eventual toxicity and ensuring their
safety within the safe-by-design concept.1−4 Experimental
characterization of the surface phenomena is difficult because
of the small volume of the interface region relative to the bulk of
the materials or solution. Molecular computer simulations, such
as ab initio, classical atomistic, or coarse-grained molecular
dynamics (MD), combined within consistent multiscale
scheme,5 can provide deep insights into molecular phenomena
at the material surface. However, such simulations are time-
consuming, and it is practically impossible to carry out suchMD
simulations in a high-throughput manner for a large number of
nanomaterial surfaces and their variations, in interaction with
realistic biological environment which may include thousands of
different biomolecules. Use of data-driven machine learning
(ML) approaches becomes a natural choice when one needs to
operate with a large amount of data.
ML techniques are nowadays growing tremendously in

chemistry and materials science and have matured to become
a powerful tool in nanomaterial design, characterization, and
safety assessment.6−8 Quantitative structure−activity relation-
ships (QSARs), supervised ML algorithms like linear regression
(LR), support vector machine, artificial neural network (ANN),
decision tree/random forest as well as unsupervised K-means
and principal component analysis (PCA) have been applied to
predict nanomaterials’ capabilities in areas of toxicity,9,10

adsorption and surface science,11 catalysis,12 and mechanical
properties.13

Within data-driven and ML models, a set of descriptors
characterizing a specific nanomaterial is used to predict the
properties of the nanomaterials for their functionality and safety
in the biological environment. Some widely used descriptors are
general characteristics of the nanoparticles such as size, shape,
surface charge, etc. It is less straightforward to find relevant
descriptors which characterize the material itself and how it
interacts with biomatter to distinguish between different types of
materials such as metals, metal oxides, carbon-based nanoma-
terials, quantum dots, etc. It was suggested that adsorption free
energies (called also binding free energies) of small molecules,
representing typical fragments of biomolecules such as proteins
and lipids, can be used as such descriptors, relevant for
characterization of bionano interactions.14 Adsorption free
energy is a well-defined physical property, it can be computed
by molecular simulations and measured experimentally, and it is
directly related to such molecular initiating events of toxicity
pathways as biomembrane permeation or protein corona
formation.5 A set of such adsorption free energies can be
considered as a “biological fingerprint” of the nanomaterial that
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can be used in data-driven models for evaluation of functionality
and safety of nanomaterials.15 In this line, Brinkmann et al16

analyzed adsorption affinity of microbial metabolites to carbon
nanotubes and metal nanomaterials using QSAR and molecular
dynamics - metadynamics simulations in relation to assessment
of adverse effects of nanoparticles passing the gastrointestinal
tract. Chen et al.17 used the biological surface adsorption index
to cluster nanomaterials according to their surface physico-
chemical properties for biological/environmental predictions.
Adsorption free energies of small biomolecules such as amino

acids and lipid fragments have been computed in molecular
simulations for a number of nanomaterials in a variety of
studies,18−24 and it was shown that such data can be further used
to predict adsorption of proteins.5 QSAR models have been
developed for protein adsorption on a nanoparticle surface
which demonstrated that instead of fitting many parameters,
only a few of the protein characteristics are actually important.14

It can be imperative to ask, what is the minimum set of
molecules, adsorption free energies of which to a given
nanosurface can be used to predict adsorption of an arbitrary
biomolecule to this nanosurface and which can be further used
to characterize the interaction of the nanomaterial with
biomatter? Understanding these relationships would facilitate
both computational and experimental characterization of
nanomaterials with respect to interaction with biological
environments since such characterization could be done with
less amount of computational efforts or experiments.
Besides choosing the most relevant descriptors that directly

affect the ML model’s interpretability, the model complexity is
another question in usingMLmethods. SimpleMLmethods like
LR and K-means can be applied to smaller data sets and easily
understood while high-performance ANN needs larger training
data sets and acts like a black box that may hinder users from
identifying the weakness of the training model. Choosing the
best ML algorithm to fulfill the accuracy, interpretability, and
performance for modeling is challenging. The key point is to find
an ML algorithm that compromises between complexity and
accuracy in order to establish an accurate, efficient, and
explicable model. In this work, three different ML algorithms,
LR, decision tree-based ensemble learning, and one-hidden-
layer neural network, have been applied to model biomolecule−
surface adsorption free energy in order to find an optimized
methodology that has a balance between model’s accuracy and
performance.
In this work, we analyze data on adsorption free energies of

over 30 small molecules representing various fragments of
biomolecules to over 30 nanomaterial surfaces. We test several
ML methods to develop predictive models of evaluation of
adsorption free energies of small molecules to a specific
nanomaterial from knowing the adsorption free energy of only
a few selected molecules. Finally, we use the developed models
to group nanomaterials in clusters such that nanomaterials in the
same cluster have similar interactions with the biological
environment and thus are expected to have similar biological
responses.

■ MATERIAL MODELS AND METHODS
Overall Approach.The overall aim of our work is to identify

a limited set of biomolecules, knowledge of adsorption free
energies of which to a certain material can be used to predict
adsorption free energies of other biomolecules to the same
material that can be further used to classify, or to group,

materials with respect to their interaction with biomatter. The
developed approach includes the following steps:

• Data collection. Here, we collect numerical data on
adsorption free energies of 32 small molecules to a set of
33 nanomaterials computed by MD simulations.

• Clustering of molecules. We use adsorption free energies
data to cluster molecules into groups, which show similar
interaction patterns with different materials, and select
representatives of the groups.

• Regression models and their validation. We explore
several methods to predict adsorption free energies of
biomolecules from knowledge of adsorption free energies
of a few molecules selected at the previous step.

• Grouping of nanomaterials. We use both the full data set
of adsorption free energies and the predicted set of
adsorption free energies to cluster nanomaterials into
groups.

The workflow of the specific methods, during both the model
development and its intended use, is illustrated in Figure 1.
Detailed description of the algorithms used at each step is given
below.

Training Systems. Previously in our group, we computed
adsorption free energies of a set of 29 biomolecules to a number
of nanomaterials.5,21,24,25 These molecules include side-chain
analogues of naturally occurring amino acids (except glycine and
proline), full amino acids glycine and proline, protonated or
unprotonated forms of some amino acids having pKa values
between 4 and 10, fragments of lipids, and D-glucose. In order to
make the data set more extensive and more suitable for ML
analysis, in this work we carried out additional free energy
computations. Thus, we added three additional molecules
representing fragments of unsaturated lipids and computed
adsorption free energies of these molecules to all considered in
the previous papers’ nanomaterials. The selected set of
molecules represents constituting fragments of the most
essential biomolecules: proteins, lipids, and glucans and thus
cover a major part of the biochemical molecular space.
Furthermore, we computed adsorption free energies of the

Figure 1. General scheme of the workflow of methods used during the
model development and its intended use.
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extended set of 32 molecules to several other nanomaterials, not
considered in the previous studies. The whole set of considered
biomolecules, together with their notation through the text, is
presented in Figure 2.
As nanomaterial surfaces, we in previous studies considered

carbon-based nanomaterials including unstructured amorphous
carbon, pristine graphene and its derivatives (such as few-layer
graphene, graphene oxide, and reduced graphene oxide),
pristine carbon nanotubes (CNTs), and those functionalized
with −OH, −COOH, −COO−, −NH2, and −NH3

+ groups in
two different concentrations: low and high. The low value
corresponds to typical experimental conditions (a few wt %),
while the high value is the maximum concentration allowed
while keeping an intact CNT. Other nanomaterials for which
adsorption free energy data are available from previous studies
include several types of metal oxides: titanium dioxide surfaces
with lower surface energy [TiO2-rutile (110) and (100) as well
as TiO2-anatase (101) and (100)], silicon dioxide (SiO2 in
quartz and amorphous form), iron oxide (Fe2O3(001) oxygen-
terminated surface), and ZnS semiconductor in several
modifications: pristine ZnS(110) surface, poly methyl meth-
acrylate (PMMA)-coated ZnS(110) surface, and spherical ZnS

nanoparticle of 5 nm diameter. The surface of metal oxide
nanomaterials was modified by setting hydroxyl groups and
protonated oxygens at a specified fraction of the surface sites to
be consistent with experimental zeta potential, while the rest of
the surface sites had molecularly bound water in the BOND
model or were left free.26 To extend the data set, in this work we
carried out computations for several additional nanomaterials:
two zinc oxide surfaces [ZnO(101̅0) and ZnO(12̅10)],
cadmium selenide (CdSe), and additional TiO2 surfaces without
molecularly bound water. The extended set of nanomaterials
thus includes representatives of the most important classes of
nanomaterials: carbon-based, metal oxides, semiconductors
(quantum dots), with emphasis on the most used nanomaterials
(CNTs, graphene, TiO2) which are presented in several
variations. Furthermore, our choice includes both hydrophobic
and hydrophilic nanomaterials as well as charged and uncharged
surfaces. The whole set of considered nanomaterials, together
with their notation through the text and references to the force
field parametrization and to the studies on adsorption free
energy computation, is given in Table 1. We also prolong some
previous computations for CNT nanomaterials in order to
reduce standard deviation errors.

Figure 2. Chemical characterization of adsorbents.
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■ METHODS
Adsorption Free Energy Calculations.All adsorption free

energies analyzed in this work (see full account of the studied
systems in the previous section) were computed by advanced
sampling metadynamics simulations implemented in the
PLUMEDmodule v 2.732 to Gromacs 2020 or 2021 software.33

The detailed description of the algorithms and methods to
ensure convergence of the simulations and analyze uncertainty
are given in our previous publications.5,21,24 Complementary
adsorption free energy computations of this work were carried
out according to the same methodology. Here, we recapitulate
the basic features and parameters of these computations.
The z-component of the distance between the surface of the

nanomaterial (atoms in the outermost layer) and the center of
mass (COM) of the adsorbate, called surface separation distance
(SSD), was used as a collective variable except for the ZnS
spherical nanoparticle and for amorphous carbon, where the
SSD was determined as the minimum distance between the
COM of the adsorbate and a surface atom because the former
definition of SSD is not accurate enough for a rough surface.
Each simulation was started by placing the adsorbate molecule
outside the nanomaterial and filling the rest of the simulation
box with water. For charged nanosurfaces, the system was
neutralized by adding appropriate number of Na+ or Cl− ions,
additional ions were added to provide a salt concentration at the

physiologic conditions (0.15 M). The systems were initially
equilibrated by running nonbiased simulation in semianiso-
tropic NPT ensemble. The last configuration of that simulation
was used as a starting point of the metadynamics simulation,
which was run in the NVT ensemble with a constant Gaussian
height of 0.001 kJ/mol deposited every 500 steps for at least 600
ns. The first 50 ns of the simulation was excluded from the
analysis. The production part was prolonged for some
combinations of sorbent�nanomaterial up to 1000 ns to
improve statistical uncertainty. The potential of mean force
(PMF) W(s) was calculated by integration over the average
force (⟨F(s)⟩) acting on the adsorbent molecule at each SSD as
follows

s F s sW( ) ( ) d
s

s0
=

(1)

where s0 is taken on a large distance from the surface where
average force is negligibly small. Adsorption free energy is then
obtained from the PMF by

G k T ln
1

dse W s k T
ads B

0

( )/ B
i
k
jjjj

y
{
zzzz=

(2)

where kBT is the product of the Boltzmann constant and the
absolute temperature and δ is the adsorption layer thickness
which was set to 0.8 nm in our calculations. We call this quantity

Table 1. Chemical Characterization of Considered Nanomaterials, Including Reference to the Force Field (FF-Ref), and
Reference to the Work Where Adsorption Free Energies Were Computed (Ads-Ref)

description Code chemical composition FF-ref Ads-ref

amorphous carbon C-AM-1 C1944 27,28 21
amorphous carbon C-AM-2 C1944 27,28 21
amorphous carbon C-AM-3 C1944 27,28 21
Graphene GR C416 28 21
bilayer graphene bi-GR C1664 28 21
trilayer graphene tri-GR C2496 28 21
graphene oxide GO C336(OH)86(O)39H54 28 21
reduced graphene oxide rGO C336(OH)20(O)14H57 28 21
CNT (11,11) CNT C660 28 21
CNT-OH (3.9 wt %) CNT-OH-low C660(OH)19 28 21
CNT-OH (14 wt %) CNT-OH-high C660(OH)76 28 21
CNT-COOH (2.8 wt %) CNT-COOH-low C660(COOH)5 28 21
CNT-COOH (30 wt %) CNT-COOH-high C660(COOH)77 28 21
CNT-COO-€ (2.7 wt %) CNT-COO�low C660(COO−)5 28 21
CNT-COO− (10 wt %) CNT-COO�high C660(COO−)20 28 21
CNT-NH2 (2 wt %) CNT-NH2-low C660(NH2)10 28 21
CNT-NH2 (13.8 wt %) CNT-NH2-high C660(NH2)79 28 21
CNT-NH3

+ (2.1 wt %) CNT-NH3
+-low C660(NH3

+)10 28 21
CNT-NH3

+ (4.1 wt %) CNT-NH3
+-high C660(NH3

+)20 28 21
TiO2-ana(101)-NB TiO2-ana(101) (TiO2)2340(OH)78 5 this work
TiO2-ana(101)-BOND TiO2-ana(101)-B (TiO2)768(OH)14(H2O)82 5 5
TiO2-ana(100)-BOND TiO2-ana(100)-B (TiO2)672(OH)28(H2O)68 5 5
TiO2-rut(100)-BOND TiO2-rut(100)-B (TiO2)770(OH)28(H2O)112 5 5
TiO2-rut(110)-BOND TiO2-rut(110)-B (TiO2)800(OH)30(H2O)70 5 5
ZnO(101̅20) ZnO(101̅0) (ZnO)864(OH)63H63 26 this work
ZnO(12̅10) ZnO(12̅10) (ZnO)1152(OH)90H90 26 this work
ZnS(110) ZnS(110) (ZnS)1344 29 24
PMMA-coated-ZnS(110) ZnS(110)-coated (ZnS)1344([C5H8O2]3)70 29 24
ZnS nanoparticle ZnS-NP (ZnS)1800 29 24
SiO2-Q4 (quartz) SiO2-Q4 (SiO2)672 30 25
SiO2-Q2 (amorphous) SiO2-Q2 (SiO2)504(OH)112H112 30 25
Fe2O3(001)-O-terminated Fe2O3(001) (Fe2O3)1920(OH)240H240 25 25
CdSe CdSe (CdSe)288 31 this work
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MetaD adsorption free energy in the rest of the text. The PMF
was evaluated during each 100 ns window of the production part
of the simulation. The variance of the PMF over windows was
used to estimate minimum and maximum values of the PMF at
each distance point and was then used to determine maximum
and minimum values of the adsorption free energies. In most
cases, the statistical uncertainty of free energies was found within
0.5 kJ/mol.
Other important simulation parameters are listed below. A V-

rescale thermostat34 with a relaxation time of 1 ps was used to
keep temperature T = 300 K constant. Particle-mesh Ewald
summation for electrostatic and Lennard-Jones interactions35

was employed with a grid spacing of 0.12 nm. All bonds to
hydrogen atoms were constrained by applying LINCS
algorithm.36

In all computations, the biomolecules were described by the
general amber force field (GAFF) (version 2.11) with
parameters generated by running antechamber37 via acpype.38

The TIP3P model39 was used for water molecules. Carbon-
based nanomaterials were modeled with the GAFF parameters.
For ZnO and TiO2 force field parameters, compatible with
biomolecular force fields, have been derived in previous studies
from ab initio MD simulations.5,26 References for force field
parameters of each nanomaterial can be found in Table 1. More
computational details for each specific system can be found in
references given in Table 1. The whole data set of adsorption
free energies used in this work, including estimated
uncertainties, is provided in the data archive as a part of the
Supporting Information.
Machine Learning Methods. For clustering of biomole-

cules into groups and selection of group representatives, we have
used PCA, agglomerative clustering,40 and K-means.41 PCA was
used for linear dimensionality reduction of the data using
singular value decomposition42 in order to get indication on the
optimal number of clusters. The agglomerative clustering and K-
means algorithms were used to create the clustering models.
Euclidean distance was used to calculate the distance between
instances, and the Ward method was used to compute the
distance between the clusters (linkage distance).
After grouping biomolecules to the identified clusters and

selecting cluster representatives, we have used several regression
methods to develop models of prediction of the free energies of
biomolecules from knowing the free energies of only several
selected molecules. In other words, adsorption free energies of
selected molecules were “features”, while adsorption free
energies of other molecules were “responses”. The LR algorithm
was employed to create a linear model. LR was chosen for its
simplicity and straightforward implementation. To improve and
boost regression modeling, an ensemble learning method of
AdaBoost (AdaBoostRegressor)43 was also tested. AdaBoost
was selected due to its capability to enhance predictive
performance by sequentially combining weak learners and
assigning higher weights to misclassified instances in subsequent
iterations, thereby focusing on areas where model performance
is weaker. Here, the decision tree regressor44 was employed as a
weak learner with a max depth of three, and we used 50 boosting
iterations with linear loss function. Finally, we applied ANN
because of its capacity to capture intricate nonlinear relation-
ships in data, making it suitable for scenarios where the
underlying patterns are complex and not easily captured by
simpler models. In the ANN model, multilayer perceptron
regressor (MLPRegressor)45 with tanh activation function was
used, together with L2-regularization scheme to prevent

overfitting of the training data and Adam stochastic gradient-
based optimizer for weight optimization. Testing of these three
regression methods in predictions of adsorption free energies
allows for an exploration of the trade-offs between model
complexity and predictive performance. Linear regression
provides interpretability but may lack accuracy in capturing
complex relationships. AdaBoost may improve performance
through boosting but may be sensitive to noisy data, leading to
overfitting. ANN excels in capturing nonlinear patterns but can
be computationally intensive and may require larger data sets.
For each regression method, train-test splitting was created by

random splitting of the whole data set into two parts, with 70%
of the nanomaterials as the training set and 30% as the testing
set. ShuffleSplit was also used to make random permutations
resulting in 10 different splittings of the whole data set. Scikit-
learn46 library of Python was used to implement the used
methods and algorithms.
To evaluate the accuracy of the model, the R2 score

(coefficient of determination) and the mean absolute error
(MAE) have been calculated as follows

R
y y

y y

N
y y

1
( )

( )

MAE
1

i
N i i

i
N i i

i

N
i i

2 1 ML MetaD
2

1 mean MetaD
2

1
ML MetaD

=

= | |

=

=

= (3)

where yML and yMetaD are predicted by the ML model and
computed bymetadynamics free energies, respectively, and ymean
is the average of MetaD free energies in the considered set of
data points. The standard deviation of the R2 score and MAE
were estimated by calculating these values for 10 different
iterations of train-test splitting on the entire data set.

■ RESULTS AND DISCUSSION
Dimensionality Reduction. Computations of biomole-

cule−surface adsorption free energy for many (32 in our case)
biomolecules to provide nanomaterial biological fingerprint are
computationally demanding, and we want to identify a limited
set of biomolecules that determine adsorption behavior of other
molecules. We first tested the PCA in order to project the high-
dimensional data to a lower dimensional space and quantify the
variance of data along each principal component. The maximum
likelihood estimate (MLE) algorithm42 is used to guess the
number of principal components. The amount of variance
explained by each of the principal components is shown in
Figure S1 of Supporting Information. Three major principal
components can be identified with a significant variance while
the explained variances along the other principal components
are negligible.
In order to quantify the direction of each principal axes in the

new feature space, we calculated the absolute value of
eigenvectors along the original features (32 biomolecules) for
three main principal components, which are shown in Figure S2
of Supporting Information. For the first principal component
with maximum variance, larger eigenvalues are found along the
aromatic or cyclic biomolecules like TYR, TRP, HID, PHE,
ARG, DGL, and PRO. In the second principal component,
negatively charged residues ASP, GLU, CYM, and PHO
contribute significantly while positive and polar species
contribute significantly to the third component. Although
PCA characterizes the number of main principal components
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to reduce the features in modeling, it cannot identify the most
relevant ones, that is do feature selection.
In the following, we apply clustering methods to assign

biomolecules to different clusters based on the similarity/
dissimilarity of adsorption free energies in order to select
relevant biomolecules (features) in biomolecule−surface
adsorption free energy modeling.
Clustering of Biomolecules. In order to select biomole-

cules (features) for biomolecule−surface adsorption free energy
modeling, unsupervised ML clustering methods have been used
to classify biomolecules into groups (clusters) with similar
attributes (interaction) to different nanomaterials. Here, we
employed the hierarchical agglomerative clustering algorithm to
cluster biomolecules based on a matrix of root mean squared
distances of MetaD adsorption free energy values on different
nanomaterials. This approach results in a cluster hierarchy of
biomolecules with similar behavior in the interaction with the
nanomaterials. Cluster tree for clustering of biomolecules is
shown in Figure 3. By considering sufficiently large linkage
distance in the dendrogram of biomolecules clustering, we can
observe three distinct clusters (highlighted in Figure 3 by
different colors) of biomolecules as follows: (I) prevailing
aromatic biomolecules, (III) small-sized biomolecules with a
negative charge, and (II) rest of biomolecules. This grouping is
well correlated with the results of PCA.
Group (I) consists of aromatic or cyclic biomolecules like

TYR, TRP, HID, PHE, ARG, DGL, and PRO which distinguish
from others in that they interact strongly with hydrophobic
carbon-based nanomaterials such as CNTs or graphene due to
favorable π−π interactions.21 Arginine is not a cyclic molecule,
but its guanidinium group has sp2 hybridized atoms which forms
a quasi-aromatic structure that can engage in π−π stacking
interactions. Group (III) (shown in red in Figure 3) consists of
ASP, GLU, and CYM which are small-sized biomolecules with a
negative charge. This group interacts selectively with nanoma-
terials with positive surface charges or with surface-exposed
positively charged atoms of metal oxides due to charge−charge
interactions.24,26 Group (II) consists of manymolecules that can
be further divided into smaller groups by lowering the linkage
distance. It is notable that hydrogen bonding molecules are not
forming a group but appear mostly in group II together with
small hydrophobic and some bulky charged molecules. Another

remarkable result is that the negatively charged phosphate
residue (PHO) does not appear in group III with other
negatively charged molecules. A possible explanation can be that
in the phosphate, negative charge is distributed over 4 oxygen
atoms, two of which are screened by the methyl groups, thus it
behaves as a more “bulky” ion. Anionic molecules of group III
have either carboxylic charged group COO−, or sulfur, with a
strong negative charge localized at the edge of the molecule.
These groups can interact strongly with positively charged metal
sites at the surface of metal oxide or semiconductor materials,
while the more bulky PHO residue cannot displace water
molecules typically bound to such sites, and generally, PHO
shows weaker binding to polar surfaces, more similar to other
molecules of the group II.
We have also tried a nonhierarchical clustering technique of

K-means. This method partitions all data points into a
predefined number of sets to minimize the within-cluster
variance and maximize the between-cluster variance. Figure S3
of Supporting Information shows “within-cluster” sum of square
distances (called inertia) as a function of the number of tested
clusters. As the number of clusters increases, the inertia generally
decreases. The “elbow” point in the curve, located at k = 3,
indicates the optimal number of clusters. Thus, all tested
methods, PCA analysis, agglomerating clustering, and k-means,
points k = 3 as the optimal number of clusters. Note further that
for k = 3 the K-means clustering classifies biomolecules in the
same groups as agglomerative clustering.
In order to select a set of biomolecules (features) for

biomolecule−surface adsorption free energy modeling, we
identified within the hierarchical agglomerative clustering
algorithm one representative biomolecule for each cluster by
calculating the distance of the biomolecule to the center of the
cluster and choosing the biomolecule with the smallest distance
to the center of the cluster. PRO, VAL, and ASP have been
selected as features according to this principle (see Table S1 of
Supporting Information showing all distances to the cluster
centers). By selecting these biomolecules, we aim to predict
other biomolecular adsorption free energies as a function of the
free energies of the three selected biomolecules. While the
choice of the representatives was done by a formal criteria to be
closest to the cluster center, the choice of proline as
representative of group I is intriguing, taking in mind that this

Figure 3.Dendrogram of biomolecules obtained by the agglomerative clustering according to their binding free energies to nanomaterials. Division on
three major clusters (referred in the text as groups I, II, and III) are highlighted by different colors. Representative molecules of each group determined
by the closest distance to the cluster centers are shown.
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residue differs from other amino acids by binding to the protein
backbone by two bonds. On the other hand, proline is taken
separately has a ring structure similar to other molecules of the
group. It was also noted previously that proline has some
specificity in interactions with nanoparticles. Thus, Ranjan et
al.47 studied interaction of TiO2 with different proteins and
found that titanium dioxide nanoparticles frequently interacted
with proline, lysine, and leucine within proteins, exhibiting a
stronger binding affinity with proteins that contain these
particular amino acids. Zuo et al.48 also showed the importance
of proline-richmotifs in protein in interaction with carbon-based
nanoparticles. These findings give indication that the proline
residue might play a specific role in the interactions between
biomolecules and nanomaterials.
Machine Learning PredictionModels.We first tested the

LR algorithm to fit the MetaD adsorption free energy.
Adsorption free energies of three selected biomolecules (PRO,
VAL, and ASP) on different nanomaterials have been used as
input data (features) for modeling of free energy of the other 29
biomolecules. The training was made over the training set of
nanomaterials, which included 70% of randomly chosen (23 of
33) nanomaterials. From the selected training set, a model was
derived which predicted adsorption free energies of 29 “other”
molecules from the free energies of 3 selected, and this model
was then used to predict the free energies of 29 “other”
molecules in the testing set of nanomaterials (which was not
included in training). To quantify the accuracy of the resulted

model, the R2 score and MAE of the adsorption free energy of
each molecule to nanomaterials of both training and testing data
sets have been calculated and averaged over 10 different random
splittings between training and testing data sets. The results are
listed in Figure 4. For most of the molecules, LR modeling fits
the computed by MetaD results well, with an R2 score value of
about 0.9 for both training and testing sets, and with an MAE
under 2 kJ/mol. Although the LR algorithm can reasonably
model adsorption free energy for most of the considered
molecules, our result for PHO and ETA (and to a lesser degree
for CHL) shows R2 score below 0.5 for the training set and a
negative R2 score for the testing set. This draws the average R2
score for the testing down to 0.79, which is not satisfactory.
Analysis of data for PHO and ETA shows that a large
discrepancy comes from strong adsorption of PHO (negatively
charged phosphate group) on NH3

+-functionalized CNTs and
adsorption of ETA (positively charged ethanolamine group) on
COO−-functionalized CNTs. Charged molecules and charged
surfaces are relatively poorly presented in the data set whichmay
be the reason for poor reproduction of their adsorption free
energy in the LR model.
To improve accuracy in the adsorption free energy prediction,

we can increase the number of features feeding into the LR
modeling or apply other ML algorithms. First, we modified our
LR model by adding PHO and ETA adsorption free energies as
features into the training data set. The performance of our
modified LR model with five features is shown in Figure 5. R2

Figure 4.R2 score andmean absolute error for LRmodeling of biomolecule−surface adsorption free energy with adsorption free energies of ASP, VAL,
and PRO biomolecules are used as nanomaterials’ features.
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Figure 5. R2 score and MAE for LR modeling of biomolecule−surface adsorption free energy by adding free energies of PHO and ETA biomolecules
(besides ASP, VAL, and PRO) as nanomaterials’ features.

Figure 6. Predicted vs computed by MetaD biomolecule−surface adsorption free energies for testing data set by applying different ML algorithms.
Data for one specific splitting between training and testing data sets with R2 score close to the average R2 score are shown.
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score for both training and testing data sets is improved and in
many cases is close to 1. Predicted by LR modeling adsorption
free energies with respect to the MetaD results are shown in
Figure 6 with an average R2 score of 0.88 for all biomolecules
(one of ten examples with the R2 score close to average is shown
in Figure 6). The R2 and MAE results averaged over 10 different
splittings between training and testing data sets are gathered in
Table 2.

Next, we tried to improve the performance ofMLmodeling of
biomolecule−surface adsorption free energy by applying other
regression algorithms and comparing with LR modeling. We
applied an ensemble ML technique49 in which predictions from
multiple ML models are combined in order to bring better
predictive results (in terms of accuracy and performance). An
advantage of ensemble learning is that it allows users to combine
simpler classifiers with more control over feature selection to
increase the interpretability and efficiency of the combined
methods. Bootstrap aggregation (bagging), boosting, and
stacking are three popular ensemble learning techniques.49

Here, we applied the AdaBoost boosting algorithm in which the

decision tree regressor is used as the base estimator (weak
learner). In this method, first, a decision tree regressor fits on the
original data set and then additional copies of the regressor
(maximum 50 estimators) are applied, and the weights of
instances are adjusted according to the error of the previous
estimator. As such, subsequent regressors focus more on difficult
cases in order to increase the accuracy of modeling. The
performance of AdaBoost modeling of biomolecule−surface
adsorption free energy is shown in Figure S4 of Supporting
Information by considering three selected biomolecules (PRO,
VAL, and ASP) and in Figure S5 for five selected biomolecules
(PRO, VAL, ASP, PHO, and ETA) as modeling features, as well
as in Table 2. R2 score of AdaBoost modeling is close to 1 and
MAE is reduced to below 0.1 kJ/mol in the training data set,
while not much improvement is observed for the testing data set
compared to the LR modeling. The predicted AdaBoost
adsorption free energy for the testing set shows an average R2
score of 0.68 and 0.86 for models with 3 and 5 features,
respectively, which is lower compared to the LR modeling. A
large difference in R2 score between training and testing data sets
can be due to overfitting, when AdaBoost, due to a higher
flexibility almost perfectly fits the training data but is unable to
correctly reproduce testing data.
We have also tested whether a nonlinear neural network could

improve prediction of free energy. Since our data set is small, we
implemented one-hidden-layer NN with 10 nodes using the
tanh activation function. The performance of NN modeling of
biomolecular adsorption free energy using 3 selected bio-
molecules is shown in Figure S6, while result for the extended set
of 5 molecules is shown in Figure S7 of Supporting Information,
as well as in Table 2. An example of the predicted adsorption free
energy with respect to the MetaD adsorption free energy is also
shown in Figure 6. While providing similar to the LR model
quality of prediction for the training data set, the R2 score for the
testing data set in theNNmodel, 0.74 and 0.77 for models with 3
and 5 features, respectively, appeared to be lower compared to
the LR model.
Summarizing results obtained within the three consideredML

models (LR, AdaBoost, and NN), we can conclude that simple

Table 2. ML Models (LR, AdaBoost, and NN) Performance
Expressed by the R2 Score and MAE Taken over all
Biomolecules Except the Selected Ones and Nanomaterials
for the Training or Testing Sets and Averaged over 10
Different Divisions between Training and Testing Data Setsa

ML
methods RTrain2 RTest2

MAETrain
(kJ/mol)

MAETest
(kJ/mol)

LR (3) 0.91 ± 0.02 0.79 ± 0.15 0.88 ± 0.12 1.03 ± 0.26
LR (5) 0.95 ± 0.01 0.88 ± 0.09 0.70 ± 0.11 0.96 ± 0.24
AdaBoost
(3)

1.0 ± 0.01 0.68 ± 0.39 0.06 ± 0.03 1.08 ± 0.39

AdaBoost
(5)

1.0 ± 0.01 0.86 ± 0.10 0.05 ± 0.02 0.99 ± 0.33

NN (3) 0.92 ± 0.01 0.74 ± 0.17 0.84 ± 0.12 1.39 ± 0.38
NN (5) 0.95 ± 0.01 0.77 ± 0.19 0.58 ± 0.11 1.44 ± 0.38

aThe number of selected biomolecules as features is shown in
parentheses.

Figure 7. Dendrogram of nanomaterials’ agglomerative clustering obtained from the full adsorption free energies data set. Insets show typical
adsorption modes of biomolecules.
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LR performs better than the two others for the prediction of
biomolecular adsorption free energy, providing a high averageR2
score of 0.88 and MAE within 1 kJ/mol for the testing data set.
Coefficients of this best-performing LRmodel are given in Table
S2 of Supporting Information. Predictions are less good for a few
charged molecules (PHO, ETA, and CHL); however, more
elaborated AdaBoost ensemble and NN algorithms do not help
to improve the prediction of binding free energy for these
molecules (see Figures 4, and S4 and S6 of Supporting
Information), which can be due to the limited number of
studied nanomaterials in our data set interacting selectively with
PHO and ETA biomolecules.
As an additional test of the developed prediction algorithm,

we have made computations removing randomly selected 30%
of nanomaterials already on the stage of clustering of
biomolecules and then followed the same methodology as
described in the Methods section. We repeated clustering
procedure for the limited (70%) set of the nanomaterials (see
result in Figure S8), found the molecules which were closest to
the cluster centers, trained the model by considering the same
selected set of 70% of nanomaterials, and used the remaining
30% of nanomaterials as a testing set. In this scheme, the model
has never seen any data from the 30% of nanomaterials of the
testing set, neither at the clustering stage nor in the training
stage. Still the results for the testing set presented in Supporting
Information (Figures S9 and S10) are very similar to the original
approach described in the Methods section (Figures 4,5), with
average R2 score of 0.86 andMAE 0.93 kJ/mol for the testing set
and LRwith 5 features. This test gives confidence that no leaking
of data occurs during clustering of biomolecules when the full
data set is used.
Clustering of Nanomaterials. Finally, we used both the

full data set of the adsorption free energies and predicted set of
adsorption free energies to cluster nanomaterials into groups
according to their interaction with biomolecules. Agglomerative
clustering was applied for this purpose. The dendrogram of
nanomaterials’ clustering using the full data set of adsorption
free energies is shown in Figure 7 while the dendrogram built
from the predicted adsorption free energy values by LR
modeling is shown in Figure 8. Both dendrograms are very

similar, showing only some minor differences in the grouping
inside smaller clusters. Also, the linkage distance between cluster
I and other clusters was decreased using the LR predicted data
set. In both dendrograms, we observe three distinct clusters as
following: group I: hydrophobic carbon nanomaterials:
graphene (including bilayer and trilayer), reduced graphene
oxide, and amorphous carbon surfaces; group III: CNTs
functionalized with charged groups of high density, as well as
highly polar ZnO and ZnS nanoparticles; and group II: rest of
nanomaterials, with further finer clustering in smaller groups.
One can also note from the linkage distance that group I
(hydrophobic materials) is more distinct from groups II and III
than groups II and III between each other. By comparison of the
biomolecules and nanomaterial clustering, one can note the
correspondence between them. Graphene clusters interact
selectively with the aromatic biomolecules (group I) due to
favorable π−π interactions.21 Positively charged or strongly
polar nanomaterials (group III) interact selectively with
negatively charged biomolecules (ASP, GLU, and CYM) due
to charge−charge interactions.24,26 One can also note that
negatively charged molecules interact with surfaces of group III
directly while with less polar surfaces of group II interact
through intermediate water as it is shown in the insets of Figure
7. Previously, Brinkmann et al16 on the basis of nano-QSAR
analysis of binding metabolites to various nanomaterials noted
that hydrophobicity-driven interactions are important to the
overall interaction strength while hydrogen bonds and other
atomistic details determine differences of interactions to specific
surfaces. Our results of clustering of nanomaterials are in line
with these conclusions.

■ CONCLUSION
We have analyzed data on adsorption free energies of over 30
biomolecular fragments to over 30 nanomaterial surfaces
computed by classical MD simulations. We have shown that
knowledge of the adsorption free energies of a small set of 3 or 5
molecules can be used to predict the adsorption free energies of
other molecules. Several linear and nonlinear ML algorithms
(LR, AdaBoost ensemble learning, ANN) have been tested in
order to formulate the prediction model. We found that the

Figure 8. Dendrogram of nanomaterials’ agglomerative clustering obtained from the adsorption free energies predicted by the LR modeling with five
features.
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simplest LR model provides the best result, with an average R2
score 0.88 for 10 different randomly chosen testing sets. More
elaborated AdaBoost and NNmodels suffer from overfitting and
while reproducing well the free energy of the training set, they
produce a lower quality result for the testing set compared to the
LR model. Overfitting may arise in more complex regression
schemes with a large number of parameters such that available
data are not enough to optimize the parameters, which could be
counterweighted by supplying more data for training. We
hypothesize that the performance of AdaBoost and NN models
may be improved if simulation data for more nanosurfaces of
different types, particularly charged surfaces, would be available.
We have also demonstrated that data on adsorption free

energies of small biomolecular fragments can be used for
clustering of nanomaterials into groups such that nanomaterials
within the same group have a similar pattern of interaction with
small biomolecules. This can be further translated to similar
patterns of adsorption of proteins and formation of protein
corona14 which is predictive for biological effects of nano-
particles and adverse outcomes,2,50 thus contributing to the
grouping and read-across approach in nanotoxicity assess-
ment.51 We showed that predictions of adsorption free energy
by 5 chosen biomolecules produce the same result of
nanomaterials grouping as clustering based on the full set of
adsorption free energies. These findings can reduce the number
of time-consuming atomistic simulations required to character-
ize bionano interactions for a new nanomaterial in order to relate
it to a certain group.
The ML models presented in this work and grouping of

nanomaterials are based on adsorption free energies computed
in atomistic MD simulations. Besides the statistical error of the
simulations, which is typically well controlled, the numerical
data may be the subject of uncertainties coming from the specific
force field and other limitations of the classical MD. To this
point, in our work all the adsorption free energies were
computed within the same methodology, including also force
fields that were built according to the similar principles for the
considered nanomaterials. This gives arguments that the
presented in our study’s ML models of adsorption free energy
predictions and grouping of nanomaterials are general and less
sensitive to the specific parameters as individual adsorption free
energies could be. Furthermore, one can hypothesize that since
in all simulations the biomolecules were described using the
same force field GAFF, which in many previous studies
demonstrated good performance in comparison with experi-
ments for small molecules in water, the statistical relationships
revealed by the regressions model for a wide variety of model
nanomaterials would be relevant even for experimental
adsorption free energies. This assumption needs to be confirmed
experimentally, but if confirmed, this would greatly facilitate
experimental characterization of interactions of nanomaterials
with the biological matter.
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